855 research outputs found

    Migration of extrasolar planets to large orbital radii

    Full text link
    Observations of structure in circumstellar debris discs provide circumstantial evidence for the presence of massive planets at large (several tens of au) orbital radii, where the timescale for planet formation via core accretion is prohibitively long. Here, we investigate whether a population of distant planets can be produced via outward migration subsequent to formation in the inner disc. Two possibilities for significant outward migration are identified. First, cores that form early at radii of around 10 au can be carried to larger radii via gravitational interaction with the gaseous disc. This process is efficient if there is strong mass loss from the disc - either within a cluster or due to photoevaporation from a star more massive than the Sun - but does not require the extremely destructive environment found, for example, in the core of the Orion Nebula. We find that, depending upon the disc model, gas disc migration can yield massive planets (several Jupiter masses) at radii of around 20-50 au. Second, interactions within multiple planet systems can drive the outer planet into a large, normally highly eccentric orbit. A series of scattering experiments suggests that this process is most efficient for lower mass planets within systems of unequal mass ratio. This mechanism is a good candidate for explaining the origin of relatively low mass giant planets in eccentric orbits at large radii.Comment: MNRAS, in pres

    Multi-Planet Destabilisation and Escape in Post-Main Sequence Systems

    Full text link
    Discoveries of exoplanets orbiting evolved stars motivate critical examinations of the dynamics of NN-body systems with mass loss. Multi-planet evolved systems are particularly complex because of the mutual interactions between the planets. Here, we study the underlying dynamical mechanisms which can incite planetary escape in two-planet post-main sequence systems. Stellar mass loss alone is unlikely to be rapid and high enough to eject planets at typically-observed separations. However, the combination of mass loss and planet-planet interactions can prompt a shift from stable to chaotic regions of phase space. Consequently, when mass loss ceases, the unstable configuration may cause escape. By assuming a constant stellar mass loss rate, we utilize maps of dynamical stability to illustrate the distribution of regular and chaotic trajectories in phase space. We show that chaos can drive the planets to undergo close encounters, leading to the ejection of one planet. Stellar mass loss can trigger the transition of a planetary system from a stable to chaotic configuration, subsequently causing escape. We find that mass loss non-adiabatically affects planet-planet interaction for the most massive progenitor stars which avoid the supernova stage. For these cases, we present specific examples of planetary escape.Comment: Accepted for publication in MNRAS (2013

    Gravity localization on hybrid branes

    Get PDF
    This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behaviour is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although are not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behaviour from the Kaluza-Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.Comment: 15 pages, 11 figure

    Gauge fields in a string-cigar braneworld

    Get PDF
    In this work we investigate the properties of an Abelian gauge vector field in a thin and in a smoothed string-like braneworld, the so-called string-cigar model. This thick brane scenario satisfies the regularity conditions and it can be regarded as an interior and exterior string-like solution. The source undergoes a geometric Ricci flow which is connected to a variation of the bulk cosmological constant. The Ricci flow changes the width and amplitude of the massless mode at the brane core and recover the usual thin string-like behavior at large distances. By numerical means we obtain the Kaluza-Klein (KK) spectrum for both the thin brane and the string-cigar. It turns out that both models exhibit a mass gap between the massless and the massive modes and between the high and the low mass regimes. The KK modes are smooth near the brane and their amplitude are enhanced by the string-cigar core. The analogue Schr\"odinger potential is also tuned by the geometric flow.Comment: The discussion about the Kaluza-Klein spectrum of the gauge field was improved. Numerical analysis was adapted to the conventional notation on Kaluza-Klein number. Some graphics were modified for considering other notation. Results unchanged. References added. Corrected typos. 17 pages. 6 figures. To match version to appears in Physics Letters

    Transiting Disintegrating Planetary Debris around WD 1145+017

    Full text link
    More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.Comment: Invited review chapter. Accepted March 23, 2017 and published October 7, 2017 in the Handbook of Exoplanets. 15 pages, 10 figure
    • …
    corecore